Abstract
Erythrobacter sp. OCh 114, an aerobic photosynthetic bacterium, had trimethylamine N-oxide (TMAO) reductase activity, which increased when the culture medium contained TMAO. The reductase was located in the periplasm. The bacteria grew anaerobically in the presence of TMAO. These results suggested that Erythrobacter OCh 114 has the ability to reduce TMAO through the respiratory chain. The TMAO respiration system of this organism was different from those of facultative purple photosynthetic bacteria in two respects: (a) TMAO reductase did not have activity to reduce dimethyl sulfoxide and (b) soluble c-type cytochrome, cytochrome c551, and cytochrome b-c1 complex appeared to be involved. The photochemical activity, which is usually inoperative in the anaerobic cell suspension, was restored by TMAO, suggesting that the photosynthesis and the TMAO respiration share a common electron transfer chain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.