Abstract

Beginning 10 hours after fertilization, zygotes of Fucus distichus L. Powell incorporate (35)S into polysaccharides as a sulfate ester of fucose. These sulfated polysaccharides are sequestered in only the rhizoid cell of the two-celled embryo and can serve as a marker of cellular differentiation. Zygotes were pulsed at different times after fertilization with Na(2) (35)SO(4) to identify and isolate the fucans localized within the region of cytoplasm destined to become the rhizoid cell. Low molecular weight pools of (35)S were saturated within 60 minutes, with the greatest incorporation into ethanol-soluble and insoluble fractions occurring with 0.1 mm Na(2)SO(4) in the artificial sea water medium. At the time of rhizoid formation, four fucose-containing polysaccharide fractions incorporated (35)S. When each fraction was subjected to diethylaminoethyl chromatography, two components were eluted with KCl that contained over 84% of the fucose and 93% of the (35)S of the particular fraction. Highvoltage paper electrophoresis of each fraction also resulted in the separation of these two major components. Both components from each of the four fractions behaved identically when separated by diethylaminoethyl chromatography and paper electrophoresis. By comparing the incorporation of (35)S into the polysaccharide fractions at 4 and 16 hours after fertilization, the fucan-sulfate components that are localized in the cytoplasm at the time of rhizoid formation were isolated. Although sulfated polysaccharides in brown algae are reported to be very heterogeneous in terms of their sugar composition and complexes with other heteropolymers, we propose that there are two major components that are sulfated during early embryogenesis in Fucus. The location of these two sulfated polysaccharides in different chemical fractions may reflect their subcellular localization (e.g., cytoplasmic vesicles or cell walls), or their association with other heteropolymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.