Abstract

The aim of this study was to obtain cold-adapted denitrifying fungi that could be used for bioaugmentation in woodchip bioreactors to remove nitrate from agricultural subsurface drainage water. We isolated a total of 91 nitrate-reducing fungal strains belonging to Ascomycota and Mucoromycota from agricultural soil and a woodchip bioreactor under relatively cold conditions (5 and 15°C). When these strains were incubated with 15 N-labelled nitrate, 29 N2 was frequently produced, suggesting the occurrence of co-denitrification (microbially mediated nitrosation). Two strains also produced 30 N2 , indicating their ability to reduce N2 O. Of the 91 nitrate-reducing fungal strains, fungal nitrite reductase gene (nirK) and cytochrome P450 nitric oxide reductase gene (p450nor) were detected by PCR in 34 (37%) and 11 (12%) strains, respectively. Eight strains possessed both nirK and p450nor, further verifying their denitrification capability. In addition, most strains degraded cellulose under denitrification condition. Diverse nitrate-reducing fungi were isolated from soil and a woodchip bioreactor. These fungi reduced nitrate to gaseous N forms at relatively low temperatures. These cold-adapted, cellulose-degrading and nitrate-reducing fungi could support themselves and other denitrifiers in woodchip bioreactors. The cold-adapted, cellulose-degrading and nitrate-reducing fungi isolated in this study could be useful to enhance nitrate removal in woodchip bioreactors under low-temperature conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call