Abstract

The study of intracellular bacteria and nanometer-size membrane vesicles within infected host cells poses an important challenge as it is difficult to identify each distinct population in the context of the complex populations generated from active host-pathogen interactions. Here, suspension cultures of L929 cells infected with the prevalent obligate intracellular bacterium Chlamydia trachomatis strain F/Cal-IC-13 are utilized for the large scale preparation and isolation of natural membrane vesicles and bacterial forms. Cell lysis with nitrogen cavitation in combination with differential centrifugation, OptiPrep™ density gradient separation, and immunoenrichment using anti-chlamydial lipopolysaccharide antibodies and MagnaBind beads allows for the isolation of both productive and persistent bacterial forms, as well as membrane vesicles derived from the host and pathogen. We have evaluated these populations by electron microscopy and Western blot analysis for identification of biomarkers. In addition, purified persistent forms of C. trachomatis induced by ampicillin display adenosine-5′-triphosphate (ATP) transport activity, suggesting that ampicillin-induced persistent C. trachomatis organisms, at least in part, rely upon host ATP as an energy source. Importantly, several chlamydial cytotoxic and/or secreted proteins are demonstrated to be associated with these vesicles, supporting the idea that membrane vesicles are generated by Chlamydia as a means of carrying and delivering virulence factors necessary for pathogenesis. The ability to produce large-scale infections and generate distinct bacteria and host-derived populations for biochemical analysis, while reducing the burdens of time and cost have implications in all areas of chlamydiology. These protocols can be applied to other strains of C. trachomatis or other intracellular bacteria.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.