Abstract

Ball-milled rice straw was dissolved in a lithium chloride/dimethyl sulfoxide (LiCl/DMSO) solvent system, regenerated, and subjected to enzymatic hydrolysis to obtain regenerated cellulolytic enzyme lignin (RCEL). The structure of the isolated lignin was characterized by elemental analysis, gel permeation chromatography (GPC), Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), and proton nuclear magnetic resonance (1H NMR). Alkaline nitrobenzene oxidation (NBO) was conducted to analyze the structural characteristics of the in-situ lignin. The results showed that the rice straw RCEL was composed of p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) phenylpropane units, with relatively high amounts of H units. The yield of RCEL is about 5% units higher than that of cellulolytic enzyme straw lignin (CEL) on the basis of total lignin in the original rice straw. When compared to the CEL obtained by the traditional method, there were no observed differences versus RCEL in terms of the elemental compositions, NBO product yields, and S/G ratio. The weight-average molecular weight of RCEL was 6835, which was lower than that of CEL, indicating that some rice straw lignin linkages were cleaved during LiCl/DMSO dissolution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.