Abstract

Isolating dominant strains for the degradation of polycyclic aromatic hydrocarbons (PAHs) is of great practical significance for the restoration of ecosystem polluted by PAHs. A total of 11 strains with capacity of degrading PAHs were obtained from soil polluted by PAHs around a coking plant, by enrichment culture, acclimation, and plate isolation. Three of them with effective PAH-degrading capability were identified and screened out by morphological observation, physiobiochemical characterization, and 16S rRNA gene sequencing, and respectively, named as DJ-3, DJ-8 and DJ-10. Based on the results of 16S rRNA gene sequencing, DJ-3, DJ-8, and DJ-10 were identified as Pseudomonas sp. Klebsiella sp., and Bacillus sp. The degradation rate of phenanthrene (200 mg·L-1), pyrene (200 mg·L-1), and naphthol (160 mg·L-1) by three strains (DJ-3, DJ-8 and DJ-10) after seven-day incubation were 48.9%-65.9%, 38.9%-43.1%, and 57.6%-64.9%, respectively. The degradation rates of mixed PAHs sample (1200 mg·L-1) by three strains were 49.1%, 44.5%, and 53.9%, which were significantly higher than other eight strains, indicating that they were highly effective in PAHs degradation. There was no antagonistic relationship among the three strains. This study would lay a foundation for building efficient PAHs degrading strains and improve the in situ bioremediation of PAHs contaminated soil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.