Abstract

Phage therapy has gained interest as an alternative treatment for methicillin-resistant Staphylococcus aureus (MRSA) infections. The purpose of this study was to isolate and characterize an effective bacteriophage against isolates of MRSA. Bacteriophage was isolated from hospital sewage. Lytic activity and the titers of phage lysates were measured using spot test and double-layer plaque assay. The phage characterization was determined through transmission electron microscopy. Adsorption rate, host range and stability tests were investigated. The latent period and burst size were estimated from a one-step growth curve. The effect of bacteriophage against MRSA biofilms was determined and Real-time PCR was used to assess the effects of the bacteriophage on the expression of the biofilm-associated genes. TEM results showed that the phage resembled the Cystoviridae family. Its latent period was 30 min, corresponding to about 71/43 phage particles per infected cell. The phage had a broad host range and it was most stable at 37°C and pH 7. It was sensitive to NaCl concentrations. The expressions of the biofilm-associated genes were significantly reduced in the presence of the phage. The isolated phage was effective against MRSA strains and it can be an optional strategy of controlling biofilm development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call