Abstract

The purposes of this study were to isolate and evaluate the interaction between mineral-weathering bacteria and silicate minerals (feldspar and biotite). A mineral-weathering bacterium was isolated from weathered rocks and identified as Rhizobium tropici Q34 based on 16S rRNA gene sequence analysis. Si and K concentrations were increased by 1.3- to 4.0-fold and 1.1- to 1.7-fold in the live bacterium-inoculated cultures compared with the controls respectively. Significant increases in the productions of tartaric and succinic acids and extracellular polysaccharides by strain Q34 were observed in cultures with minerals. Furthermore, significantly more tartaric acid and polysaccharide productions by strain Q34 were obtained in the presence of feldspar, while better growth and more citric acid production of strain Q34 were observed in the presence of biotite. Mineral dissolution experiments showed that the organic acids and polysaccharides produced by strain Q34 were also capable of promoting the release of Si and K from the minerals. The results showed that the growth and metabolite production of strain Q34 were enhanced in the presence of the minerals and different mineral exerted distinct impacts on the growth and metabolite production. The bio-weathering process is probably a synergistic action of organic acids and extracellular polysaccharides produced by the bacterium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.