Abstract
Porcine parvovirus (PPV), a causative agent of an infectious reproductive disorder causing stillbirth, mummification, embryonic death and infertility (SMEDI) syndrome in swine, is a threat to both domestic pigs and wild boars regardless of age and gender. Recent studies found that the observed average substitution rate in the PPV genome was close to those of the RNA viruses and new strains showing serological neutralization activities different from that of the vaccine strain NADL-2 have been reported. These observations have increased the need for the development of new commercial vaccine strains.In this study, a new PPV strain, GD2013, was isolated from Guangdong, China, and its entire genome sequenced. A phylogenetic tree based on the complete coding region of the genomes of 32 PPV strains was constructed using the Bayesian Markov Chain Monte Carlo (MCMC) method. The results showed that strain GD2013 fell into the same phylogenetic cluster as the classical vaccine strains NADL-2 and POVCAP, suggesting a close relationship to the vaccine strains. Multiple sequence alignments and amino acid mutation analyses of the PPV VP2 gene revealed a new amino acid polymorphism site at Thr45 on VP2 that could be used to identify low virulence strains as vaccine candidates. Selective pressure analysis of the NS1 and VP2 genes by calculating the mean rates of non-synonymous substitutions (dN) over synonymous substitutions (dS) implied that both of these genes were under negative selection. Therefore, by using phylogenetic and amino acid mutation analyses, a likely candidate strain suitable for evaluation as an attenuated vaccine strain was identified.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have