Abstract

Abstract A low ʟ-arginine metabolizing enzyme (L-AME) activity leading to ornithine, urea and additional products not identified so far could be detected in photosystem II (PS II) membranes of spinach and of the chlorophyll deficient tobacco mutant Su/su. The detectable L-AME activity was very low in untreated PS II membranes, but increased significantly (about 10 fold) when the extrinsic peptides (psbO, P and Q gene products) were removed - suggesting that the L-AME is exposed at the lumen side of PS II. It was possible to isolate the detergent-solubilized protein from CaCl2-washed PS II membranes of spinach by a combination of anion and cation exchange columns. On the basis of SDS PAGE the protein was homogenous and had an apparent molecular mass of 7 kDa. N-terminal sequencing of the polypeptide gave a contiguous sequence of 20 amino acids showing no homologies to PS II polypeptides as yet sequenced. After chromatography of the L-AME on an anion exchange column at pH 9.5 (last purification step) a completely inactive enzyme was obtained. Maximal reactivation was achieved by dialyzing the protein against Hepes-NaOH buffer in the pH range of 6.5 to 7.5 containing 100 mᴍ chloride or sulfate (being the most effective anions). The L-AME activity was totally dependent on manganese added to the reaction mixture. Moreover, there were indications of a second cation binding site being more sequestered and requiring bound Ca2+ or Mn2+ for activity (Sr2+ was less effective and Mg2+ was ineffective). There are indications that the protein contains a redox active group - possibly an aminoacid- derived quinonoid (based on a redox cycling assay with glycine and nitroblue tetrazolium). The capability of this PS II associated protein to bind the cofactors of water oxidation and having a redox active group (preliminary results) suggests that this protein might be functional in photosynthetic water oxidation. This is further supported by the fact that the isolated L-AME has a low catalase activity

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.