Abstract

A sensitive and robust method for the determination of seven inorganic and organic arsenic species was developed using ion exchange chromatography combined with inductively coupled plasma mass spectrometry (IC-ICP-MS). Both anion and cation exchange columns were used in a complementary fashion. Arsenite (As(III)), arsenate (As(V)), monomethylarsonic acid (MMA(V)) and dimethylarsinic acid (DMA(V)) were selectively separated by an anion exchange column using sodium hydroxide (NaOH) gradient elution, while monomethylarsonous acid (MMA(III)), dimethylarsinous acid (DMA(III)) and arsenobetaine (AsB) were separated by a cation exchange column using 70 mM nitric acid as the mobile phase. Baseline separation, high repeatability and low detection limits (0.10–0.75 ng mL −1) were achieved. The spiked urine samples were analyzed with this method to evaluate the matrix effect on the method. The results suggest 1–10 dilutions should be made to urine samples before sample injection for the anion exchange analysis to minimize the matrix effect. To validate the method, a new standard reference material (NIST SRM-2670a) was also analyzed. The arsenic species in NIST SRM-2670a were determined by this method, and the sum of their concentrations agreed well with the total arsenic content certified for NIST SRM-2670a. Moreover, this method was applied to measure arsenic species in urine samples from one subject living in New Jersey who drank well water contaminated with arsenic. By this method, two key arsenic metabolites, MMA(III) and DMA(III), were found to be present in these urine samples, which has previously been rarely reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call