Abstract

Blood clam Tegillarca granosa is a type of economically cultivated bivalve mollusk with red blood, and it primarily relies on hemocytes in its hemolymph for immune defense. However, there are currently no reports on the isolation and identification of immune cells in T. granosa, which hinders our understanding of their immune defense. In this study, we employed single-cell transcriptome sequencing (scRNA-seq) to visualize the molecular profile of hemocytes in T. granosa. Based on differential expression of immune genes and hemoglobin genes, hemocytes can be molecularly classified into immune cells and erythrocytes. In addition, we separated immune cells using density gradient centrifugation and demonstrated their stronger phagocytic capacity compared to erythrocytes, as well as higher levels of ROS and NO. In summary, our experiments involved the isolation and functional identification of immune cells in hemolymph of T. granosa. This study will provide valuable insights into the innate immune system of red-blood mollusks and further deepen the immunological research of mollusks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call