Abstract
Isolating and purifying liver immune cells are crucial for observing the changes in intrahepatic immune responses during the development of liver diseases and exploring the potential immunological mechanisms. Therefore, the aim of this study was to provide an optimal protocol for isolating immune cells with a high yield and less damage. We compared mechanical dissection and collagenase digestion, and the results were represented by the proportion of lymphocytes, Kupffer cells and neutrophils. The apoptosis rates of liver immune cells resulted by different isolation protocols were compared by Annexin V-staining using flow cytometric analysis. Our data indicated that the enzymatic digestion in vitro was more efficient than the mechanical dissection in vitro with a suitable collagenase IV concentration of 0.01%, and the purification of liver immune cells by a one-step density gradient centrifugation in 33% Percoll had the definite advantage of a higher proportion of the target cells. We also provided evidence that enzymatic digestion in vitro method was superior to collagenase digestion in situ for liver T lymphocytes, NK cells and NKT cells isolation and purification. This protocol was also validated in human liver samples. In conclusion, we developed an optimal protocol for isolating and purifying immune cells from mouse and human liver samples in vitro by 0.01% collagenase IV and 33% Percoll density gradient centrifugation with the advantages of higher cell yields and viability. This method provides a basis for further studying liver immune cells and liver immunity with a wide range of applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.