Abstract

Two novel peptides that inhibit the intra-erythrocyte stage of Plasmodium falciparum in vitro were identified in the venom of the Trinidad chevron tarantula, Psalmopoeus cambridgei. Psalmopeotoxin I (PcFK1) is a 33-residue peptide and Psalmopeotoxin II (PcFK2) has 28-amino acid residues; both have three disulfide bridges and belong to the Inhibitor Cystine Knot superfamily. The cDNAs encoding both peptides were cloned, and nucleotide sequence analysis showed that the peptides are synthesized with typical signal peptides and pro-sequences that are cleaved at a basic doublet before secretion of the mature peptides. The IC5O of PcFK1 for inhibiting P. falciparum growth was 1.59±1.15 μM and that of PcFK2 was 1.15±0.95 μM. PcFK1 was adsorbed strongly to uninfected erythrocytes, but PcFK2 was not. Neither peptide has significant hemolytic activity at 10 μM. Electrophysiological recordings in isolated frog and mouse neuromuscular preparations revealed that the peptides (at up to 9.3 μM) do not affect neuromuscular transmission or quantal transmitter release. PcFK1 and PcFK2 do not affect the growth or viability of human epithelial cells, nor do they have any antifungal or antibacterial activity at 20 μM. Thus, PcFK1 and PcFK2 seem to interact specifically with infected erythrocytes. They could therefore be promising tools for antimalaria research and be the basis for the rational development of antimalarial drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.