Abstract
Three different lignin-rich fractions have been used as binder material for electrodes in rechargeable lithium batteries. Lignin samples were obtained through three different pulping processes; kraft, soda and organosolv pulping processes, using wheat straw as raw material. Physico-chemical characterization of three types of lignins was evaluated. Characterization has been performed using Fourier transform infrared spectroscopy (FTIR) and 31P NMR Spectroscopy to analyse the functional groups; gel permeation chromatography (GPC) for determining molar mass distribution (MWD), and thermogravimetric analysis (TGA) to follow the thermal behaviour. Electrodes containing lignin or poly vinylidene fluoride (PVDF) were tested electrochemically. The three different lignin samples exhibited excellent performance as binder, retaining the specific capacity after 50 cycles at a current density of 100mAg‐1. These results show that lignin could be used as a low-cost and environmental binder, replacing the PVDF polymer in electrodes for energy storage applications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have