Abstract
Extracellular vesicles (EVs) are small, membranous particles that have recently emerged as one the most important mediators of intercellular communication. They can contain a variety of proteins, lipids, and nucleic acids and thus are responsible for modulation of multiple biological processes, including immune response and regulation of immune cells. Immunomodulatory activity of different EVs can be reliably assessed using EVs isolated from cell culture conditioned medium and added to in vitro or ex vivo cultures of immune cells. This article describes protocols for isolation of EVs from cell culture supernatants by differential ultracentrifugation and density gradient centrifugation. It also provides tools and protocols that enable characterization and validation of isolated particles, as well as analysis of interactions between EVs of interest and different subpopulations of human immune cells. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Isolation of extracellular vesicles by differential ultracentrifugation Basic Protocol 2: Isolation of extracellular vesicles by density gradient centrifugation Support Protocol 1: Imaging of extracellular vesicles using transmission electron microscopy Support Protocol 2: Detection of extracellular vesicle protein markers by Western blotting Support Protocol 3: Measurement and counting of extracellular vesicles by nanoparticle tracking analysis Basic Protocol 3: Analysis of extracellular vesicle uptake or association by different subpopulations of lymphocytes in vitro.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.