Abstract

We have established a new line of immortalized rat astrocytes through transfection of plasmid pSV3-neo encoding the large T antigen of simian virus 40 into normal astrocytes. One of these immortalized astrocytes (ACT-57) with a flat and polygonal cell shape, exhibited stable growth in a chemically defined medium (modified N-2 medium) as well as in medium containing ordinary serum. ACT-57, retained a detectable level of expression of glial fibrillary acidic protein (GFAP) and its mRNA, and exhibited a stronger expression of nerve growth factor (NGF) mRNA than that of normal rat astrocytes or C6 glioma cells. NGF mRNA was significantly up-regulated by phorbol ester (12-O-tetradecanoylphorbol 13-acetate, TPA) and gamma-amino-n-butyric acid (GABA) but not by hydrocortisone. None of stimulants (TPA, dibutyryl cyclic AMP (db-cAMP), hydrocortisone, L-glutamate, carbacol, GABA, dopamine, or isoproterenol) changed the expression level of either brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3). There was a discrete difference between ACT-57 and normal astrocytes in the response to GABA and isoproterenol. These findings imply that normal cortical astrocytes possess a functional heterogeneity whereas the clonal astrocyte, ACT-57, does not, indicating that ACT-57 cells may be useful for in vitro studies of neuron-astrocyte interactions involving the induction of neurotrophic factors such as NGF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call