Abstract

Bacillus subtilis 168GR10 was shown to contain a mutation, gra-10, which allowed normal temporal activation of alpha-amylase synthesis in the presence of a concentration of glucose that is inhibitory to activation of amylase synthesis in the parent strain, 168. The gra-10 mutation was mapped by phage PBS-1-mediated transduction and by transformation to a site between lin-2 and aroI906, very tightly linked to amyE, the alpha-amylase structural gene. The gra-10 mutation did not pleiotropically affect catabolite repression of sporulation or of the synthesis of extracellular proteases or RNase and was unable to confer glucose-resistance to the synthesis of chloramphenicol acetyltransferase encoded by the cat-86 gene driven by the amyE promoter region (amyR1) inserted into the promoter-probe plasmid pPL603B. It therefore appears that gra-10 defines a cis-regulatory site for catabolite repression, but not for temporal activation, of amyE expression. The evidence shows that temporal activation and glucose-mediated repression of alpha-amylase synthesis in B. subtilis 168 are distinct phenomena that can be separated by mutation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call