Abstract

A procedure has been developed for the small-scale isolation and characterization of lipoproteins secreted by cultured rat liver hepatocytes. The lipoproteins in the culture medium were separated into VLDL, LDL, HDL and a fraction with d > 1.21 on single-spin density-gradients. The lipoproteins were removed from the gradients by adsorption onto Cab-O-Sil, a hydrated colloidal silica. The lipid components were extracted from the silica with CHCl 3/CH 3OH and the apoproteins solubilized in a buffer that contained 2% sodium dodecyl sulfate and 6 M urea. The proteins were analyzed on 3–20% acrylamide electrophoresis gels that contained 1% sodium dodecyl sulfate. The two major rat-plasma lipoproteins, VLDL and HDL, were well separated by the gradients. The Cab-O-Sil was shown to bind 90–95% of the HDL and VLDL in the fractions from the gradient. The recovery of the lipid components was essentially quantitative. The recovery of the apolipoproteins was only about 60% but with very good precision. Over a 20 h period, the lipid phosphorus associated with secreted lipoproteins increased linearly. The secretion of apolipoprotein A 1 and apolipoprotein E associated with HDL and apolipoprotein B associated with VLDL also increased as a nearly linear function with time. The secretion of apolipoprotein E associated with VLDL was linear only up to approx. 6 h. The availability of this procedure should greatly facilitate further studies on the characterization of lipoproteins secreted by hepatocytes and mechanisms that regulate lipoprotein synthesis and secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.