Abstract
Identifying neural correlates of conscious perception is a fundamental endeavor of cognitive neuroscience. Most studies so far have focused on visual awareness along with trial-by-trial reports of task-relevant stimuli, which can confound neural measures of perceptual awareness with postperceptual processing. Here, we used a three-phase sine-wave speech paradigm that dissociated between conscious speech perception and task relevance while recording EEG in humans of both sexes. Compared with tokens perceived as noise, physically identical sine-wave speech tokens that were perceived as speech elicited a left-lateralized, near-vertex negativity, which we interpret as a phonological version of a perceptual awareness negativity. This response appeared between 200 and 300 ms after token onset and was not present for frequency-flipped control tokens that were never perceived as speech. In contrast, the P3b elicited by task-irrelevant tokens did not significantly differ when the tokens were perceived as speech versus noise and was only enhanced for tokens that were both perceived as speech and relevant to the task. Our results extend the findings from previous studies on visual awareness and speech perception and suggest that correlates of conscious perception, across types of conscious content, are most likely to be found in midlatency negative-going brain responses in content-specific sensory areas.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have