Abstract
Accelerating the sluggish anode reaction in a Zn–air battery can improve its energy efficiency, but the large-scale development of this battery is hindered by the lack of bifunctional catalysts. Herein, we designed a one-step carbonization strategy for synthesizing monodispersed Co nanoparticles supported on N-doped carbon nanotube (Co/CNT), which shows excellent bifunctional electrocatalytic performance with long-term durability for oxygen reduction reaction/oxygen evolution reaction. The formation of carbon substrates from the carbonization of nitrogenous organic molecules are benefit to capture more Co nanoparticles though strong metal–substrate interaction, then construct high-density effective active sites of the Lewis base for accelerating the electrocatalytic reaction process. To verify its superior performance, a rechargeable Zn–air battery with a Co/CNT air electrode was subsequently constructed. The battery exhibits an open-circuit voltage of 1.41 V and a specific discharge capacity of 835.2 mAh/gZn, which can be continuously charged and discharged with good cycle stability. Our study provides a new strategy for developing various practical carbon-based non-noble metallic bifunctional electrocatalysts with promising performance in electrocatalysis and batteries to achieve the target of carbon neutrality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.