Abstract
With the large-scale construction of wind farms, wind turbine isolated point clutter has an increasingly serious impact on airborne radar target detection performance. Traditional space-time adaptive processing methods cannot suppress wind turbine clutter (WTC) with spectrum broadening characteristics, which may lead to a decrease in target detection probability and an increase in false alarm rate. In this paper, a WTC suppression method for airborne radar based on micro-Doppler features is proposed, and we construct the feature subspace of wind turbine echo to distinguish wind turbine, target, clutter, and noise. First, the Sobel operator is used to process the radar range-Doppler spectrum, and the range cells of the wind turbines are preliminarily judged. Then the smallest of constant false alarm rate (SOCFAR) method is used to further confirm the range cells where the wind turbines are located. Next, Mahalanobis distance is used to estimate the optimal dictionary atomic parameters of WTC, and the updated dictionary atoms are used to construct an orthogonal projection matrix to suppress WTC. Finally, short-range nonstationary clutter and sidelobe clutter are suppressed by space-time adaptive segment processing. On the one hand, the proposed method realizes the accurate positioning of wind turbines through image edge detection and constant false alarm detection. On the other hand, Mahalanobis distance is used to estimate the atomic parameters of the wind turbine dictionary, which ensures the homogeneity of wind turbine samples after clutter suppression. The simulation and measured data results show that the proposed method can significantly reduce the false alarm rate caused by WTC while ensuring the effective detection of the target.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have