Abstract

Despite recent advances in medical supportive therapy, patients with severe fulminant hepatic failure (FHF) have mortality rate approaching 90%. Investigators have attempted to improve survival by using various extracorporeal liver support systems loaded with sorbents and liver tissue preparations. None of them succeeded in gaining clinical acceptance and orthotopic liver transplantation (OLT) remains a primary therapeutic option for patients with FHF. In this study, authors discuss the systems which utilize isolated hepatocytes. Most of these devices were tested in vitro and in animals with chemically and surgically induced liver failure. In some studies, signficant levels of detoxification and liver functions were achieved. The authors describe their own hepatocyte-based artificial liver (BAL). It is based on plasma perfusion through a hollow-fiber module seeded with matrix-anchored porcine hepatocytes. The BAL was used 14 times to treat 9 patients with acute liver failure. On 10 occasions, a charcoal column was included in the plasma circuit. Each treatment lasted 7 +/- 1 h. All procedures were tolerated well and 8 patients (including 6 patients with FHF) underwent OLT. Five patients with increased intracranial pressure (ICP) and evidence of decerebration had normalization of ICP and enjoyed full neurologic recovery after OLT. Laboratory data showed evidence for bilirubin conjugation, decrease in blood ammonia, maintenance of low lactic acid levels, and increase in the ration between the branched chain and aromatic amino acids. No allergic reactions to xenogeneic hepatocytes were observed. The authors conclude that BAL treatment with porcine hepatocytes appears to be safe and can help maintain patients alive and neurologically intact until a liver becomes available for transplantation. (c) 1994 John Wiley & Sons, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.