Abstract
Shell structures refer to structural elements that derive strength and load-bearing capacity from their thin and curved geometry. In practical applications, shell structures are commonly composed of multiple patches to represent intricate and diverse architectural configurations faithfully. Nevertheless, the design of multi-patch shell structures holds considerable promise. However, most of the previous work is devoted to the numerical analysis of multi-patch shell structures without further optimization design. The work proposes an inverse design framework, specifically focusing on multi-patch configurations based on Reissner–Mindlin theory. First, reparameterization and global refinement operations are employed on the provided multi-patch shell structures. Renumbering the indices of control points with shared degrees of freedom at the interface naturally ensures C0-continuity between patches. Subsequently, this study investigates the amalgamation of Isogeometric Analysis (IGA) and the Solid Isotropic Material with Penalization (SIMP) method for topology optimization of shell structures. The proposed approach is validated through numerical examples, emphasizing its capacity to enhance multi-patch shell structure design, showcasing robustness and efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.