Abstract
An isogeometric thin shell formulation allowing for large-strain plastic deformation is presented. A stress-based approach is adopted, which means that the constitutive equations are evaluated at different integration points through the thickness, allowing the use of general 3D material models. The plane stress constraint is satisfied by iteratively updating the thickness stretch at the integration points. The deformation of the shell structure is completely described by the deformation of its midsurface, and, furthermore, the formulation is rotation-free, which means that the discrete shell model involves only three degrees of freedom. Several numerical benchmark examples, with comparison to fully 3D solid simulations, confirm the accuracy and efficiency of the proposed formulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.