Abstract

In this paper, we present an isogeometric analysis (IGA) for phase-field models of three different yet closely related classes of partial differential equations (PDEs): geometric PDEs, high-order PDEs on stationary surfaces, and high-order PDEs on evolving surfaces; the latter can be a coupling of the former two classes. In the context of geometric PDEs, we consider mean curvature flow and Willmore flow problems and their corresponding phase-field approximations which yield second-order and fourth-order nonlinear parabolic PDEs. Through some numerical examples, we study the convergence behavior of isogeometric analysis for these equations using the method of manufactured solutions. Moreover, we study numerically the convergence of these phase-field approximations to the sharp interface solutions. As for the high-order PDEs on stationary surfaces, we consider a model problem which is the Cahn–Hilliard equation on a unit sphere, where the surface is modeled using a diffuse-interface approach. Finally, as a model problem for high-order PDEs on evolving surfaces, we consider a phase-field model of a deforming multicomponent vesicle which couples the vesicle shape changes with the phase separation process on the vesicle surface. The model consists of two fourth-order nonlinear PDEs which their direct finite element formulation in a Galerkin framework necessitates smooth basis functions with at least global C1 continuity; a condition that can be easily satisfied using spline bases in IGA. We solve the coupled equations both in two dimensions, where the vesicle is a curve, and in three dimensions, where the vesicle is a surface. The simulation results agree with the numerical and experimental results from the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call