Abstract
By leveraging the information of a typical CAD model in the analysis, the intensive process of discretization can be circumvented. This unification has led to the ‘Isogeometric Analysis’ (IGA) (Hughes et al., 2005). However, as the CAD model provides information only of the boundary, a 2D/3D stress analysis is still one major step away. In this work, the concepts of isogeometric analysis and the scaled boundary finite element method (SBFEM) are combined. The SBFEM requires only the boundary information and hence provides a seamless integration with the CAD modeling. Within the proposed framework, the NURBS basis functions are used to discretize the unknown fields in the circumferential direction, whilst analytical solution is sought in the radial direction. We further extend the framework to problems with singularities and to dynamic analysis. The accuracy and the convergence properties of the proposed method are demonstrated with benchmark problems in the context of linear elasticity and linear elastic fracture mechanics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computer Methods in Applied Mechanics and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.