Abstract

This paper presents a new approach which possesses the semi-analytical feature of scaled boundary finite element method and the exact geometry feature of isogeometric analysis. NURBS basis functions are employed to construct an exact boundary geometry. The domain boundary is discretized by NURBS curves for the 2D case, and NURBS surfaces for the 3D case. Especially the closed-form NURBS curves or surfaces are needed if there are no side-faces. The strategy of using finite elements on domain boundary with NURBS shape functions for approximation of both boundary geometry and displacements arises from the sense of isoparametric concept. With h-,p-,k- refinement strategy implemented, the geometry is refined with maintaining exact geometry at all levels, so the geometry is the same exact represented as the initial geometry imported from CAD system without the necessity of subsequent communication with a CAD system. Additionally, numerical example exhibits that flexible continuity within the NURBS patch rather than traditional shape functions improves continuity and accuracy of derivative stress and strain field across not only boundary elements but also domain elements, as the results of the combination of the intrinsic analytical property along radial direction and the higher continuity property of NURBS basis, i.e. it's more powerful in accuracy of solution and less DOF-consuming than either traditional finite element method or scaled boundary finite element method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.