Abstract
Bound geodesic orbits around a Kerr black hole can be parametrized by three constants of the motion: the (specific) orbital energy, angular momentum and Carter constant. Generically, each orbit also has associated with it three frequencies, related to the radial, longitudinal and (mean) azimuthal motions. Here we note the curious fact that these two ways of characterizing bound geodesics are not in a one-to-one correspondence. While the former uniquely specifies an orbit up to initial conditions, the latter does not: there is a (strong-field) region of the parameter space in which pairs of physically distinct orbits can have the same three frequencies. In each such isofrequency pair the two orbits exhibit the same rate of periastron precession and the same rate of Lense-Thirring precession of the orbital plane, and (in a certain sense) they remain "synchronized" in phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.