Abstract

In this work, we describe the functionalization of single-walled carbon nanotubes (SWCNTs) and multiple-walled carbon nanotubes (MWCNTs) with two selected isoflavones (biochanin A and formononetin), and compare the physicochemical properties of the obtained assemblies. The selection of isoflavones was based on the preliminary assessment of bibliometric maps generated from Scopus core collection. Acidic treatment of SWCNTs and MWCNTs improved the samples’ dispersibility in water. Regardless the pH environment, SWCNTs remained aggregated in aqueous solution, even after functionalization. The dispersibility of MWCNT increased after acidic treatment (MWCNTA) in both tested pH values (4 and 7). Functionalization was confirmed by the improved dispersibility of CNTs with both isoflavones. MWNCTA and isoflavone 1:1 (w/w) was used for both molecules. Biochanin A showed improved anchoring in MWNCTA when compared to formononetin. Our results corroborate the interest on the use of these new biomaterials based on carbon nanotubes for a range of biomedical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.