Abstract

AbstractIn this study, the improved Tietz potential was used to describe the internal vibration of diatomic molecules. By employing the expression for upper bound vibrational quantum number and canonical partition function of the system, equation for the prediction of constant pressure (isobaric) molar heat capacity of diatomic molecules was derived. The analytical model was used to predict the isobaric molar heat capacity of the ground state CO, BBr, HBr, HI, P2, KBr, Br2, PBr, SiO, and Cl2 molecules. The upper bound vibrational quantum number obtained for the molecules are 85, 100, 21, 21, 115, 301, 89, 157, 110, and 67. The calculated average absolute deviations are 2.3462%, 1.1342%, 2.3350%, 1.9078%, 0.7268%, 2.4041%, 1.7849%, 1.8989%, 2.5209%, and 2.1523% from experimental data. The results obtained are in good agreement with available literature data on gaseous molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call