Abstract

Islets from xeno-sources and islet like clusters derived from autologus stem cells have emerged as alternatives to cadaveric pancreas used for treatment of type 1 diabetes. However, the immuno-isolation of these islets from the host immune system suffers from the issue of biocompatibility and hypoxia. To overcome the issues of immunobarrier biocompatibility, we developed a Polysulfone (Psf)/TPGS composite hollow fiber membrane (HFM) using a hollow fiber spinning pilot plant specially developed for this purpose. Important structural variables such as fiber material, dope composition, dimensions, surface characteristics etc., were precisely engineered and tuned for bioartificial pancreas application. The HFMs were characterized for their morphology, molecular diffusion, selectivity and protein absorption. The optimized Polysulfone(Psf)/TPGS composite HFMs, which contained TPGS, exhibited uniformed structure with low insulin adsorption and high permeability of insulin. The HFM was further studied for the encapsulation and in-vitro growth with porcine and differentiated islets isolated from human umbilical cord Wharton's jelly.To prove their efficacy under in-vivo conditions, the Polysulfone(Psf)/TPGS composite HFMs were encapsulated with either of these isolated cells (porcine islets or islet like cell clusters derived from mesenchymal stem cells isolated from human umbilical cord Wharton's jelly) and they were transplanted in experimental STZ induced diabetic mice. The results showed restoration of normoglycemia for 30days, indicating their ability to respond efficiently to high glucose without immune-rejection. Thus, these results indicate that Polysulfone (Psf)/TPGS composite HFMs can be used as an implantable, immune-competent bioartificial pancreas as a therapy for type 1 diabetes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call