Abstract

In the present study , an Ising-type multisegment nanowire (IMN) with ferromagnetic / non-magnetic segment structure is investigated by means of the effective-field theory (EFT) with correlations. The effects of the composition (p) and temperature (T) on the magnetic hysteresis properties are investigated in detail. The coercive field (H C ) and squareness ( M r /M S ) of the IMN is also derived from hysteresis loops as a function of p and T. In this system, it was found that the p and T have a significant effect on the magnetic behavior. When the obtained theoretical results compare with some experimental works of nanowire in view of hysteresis behaviors, a very good agreement between them is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.