Abstract
Quantum simulation has the potential to be an indispensable technique for the investigation of non-perturbative phenomena in strongly-interacting quantum field theories (QFTs). In the modern quantum era, with Noisy Intermediate Scale Quantum (NISQ) simulators widely available and larger-scale quantum machines on the horizon, it is natural to ask: what non-perturbative QFT problems can be solved with the existing quantum hardware? We show that existing noisy quantum machines can be used to analyze the energy spectrum of several strongly-interacting 1+1D QFTs, which exhibit non-perturbative effects like ‘quark confinement’ and ‘false vacuum decay’. We perform quench experiments on IBM’s quantum simulators to compute the energy spectrum of 1+1D quantum Ising model with a longitudinal field. Our results demonstrate that digital quantum simulation in the NISQ era has the potential to be a viable alternative to numerical techniques such as density matrix renormalization group or the truncated conformal space methods for analyzing QFTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.