Abstract

In quantum information processing, one of the most useful interactions between qubits is the Ising type interaction. We propose a scheme to implement the exact Ising interaction through magnetic dipole–dipole interaction. Although magnetic dipolar interaction is Heisenberg type in general, this interaction can bring about the exact mathematical form of the Ising interaction if qubit levels are chosen among the highest magnetic quantum number states. Real physical systems to which our scheme can be applied include rotational states of molecules, hyperfine states of atoms, or electronic states of nitrogen-vacancy centers in diamond. We analyze the feasibility of our scheme for these systems. For example, when the hyperfine levels of rubidium 87 atoms are chosen as qubits and the distance of the two atoms is 0.1 micrometer, the controlled-Z gate time will be 8.5 ms. We suggest diverse search and study to achieve optimal implementation of this scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.