Abstract

As a potential candidate for quantum computation and metrology, the nitrogen vacancy (NV)center in diamond presented both challenges and opportunities resulted from charge state conversion. By utilizing different lasers for the photon-induced charge state conversion, we achieved the sub-diffraction charge state manipulation. The charge state depletion (CSD) microscopy resolution was improved to 4.1 nm by optimizing the laser pulse sequences. Subsequently, the electron spin state dynamics of adjacent NV centers were selectively detected via the CSD. The experimental results demonstrated that the CSD can improve the spatial resolution of the measurement of NV centers for nanoscale sensing and quantum information.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.