Abstract
We study scalar and chiral fermionic models in next-to-leading order with the help of the functional renormalisation group. Their critical behaviour is of special interest in condensed matter systems, in particular graphene. To derive the beta functions, we make extensive use of computer algebra. The resulting flow equations were solved with pseudo-spectral methods to guarantee high accuracy. New estimates on critical quantities for both the Ising and the Gross-Neveu model are provided. For the Ising model, the estimates agree with earlier renormalisation group studies of the same level of approximation. By contrast, the approximation for the Gross-Neveu model retains many more operators than all earlier studies. For two Dirac fermions, the results agree with both lattice and large-$N_f$ calculations, but for a single flavour, different methods disagree quantitatively, and further studies are necessary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.