Abstract

To assess stereoelectronic effects in the cleavage of tetrahedral intermediates, a series of five-, six-, and seven-membered cyclic guanidinium salts was synthesized. If stereoelectronic control by antiperiplanar lone pairs is operative, these are expected to hydrolyze with endocyclic C-N cleavage to acyclic ureas. However, hydrolysis in basic media produces mixtures of cyclic and acyclic products, as determined by 1H NMR analysis. The results show that in the six-membered ring antiperiplanar lone pairs provide a weak acceleration of the breakdown of the tetrahedral intermediate, but in five- and seven-membered rings there is no evidence for such acceleration, which instead can be provided by syn lone pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.