Abstract

A new stereoelectronic theory for the cleavage of the tetrahedral intermediate in the hydrolysis of esters and amides is presented. In this new theory, the precise conformation of the intermediate hemi-orthoester or hemi-orthoamide controls the nature of the hydrolysis products. It is postulated that the breakdown of a conformer of a tetrahedral intermediate depends upon the orientation of the lone pair orbitals of the hetero-atoms. Specific cleavage of a carbon-oxygen or a carbon-nitrogen bond in any conformer is allowed only if the other two hetero-atoms (oxygen or nitrogen) each have an orbital oriented antiperiplanar to the leaving O-alkyl or N-alkyl group. Experimentally, the oxidation of acetals by ozone and the acid hydrolysis of a series of cyclic orthoesters demonstrates clearly that there is indeed a stereoelectronic control in the cleavage of hemiorthoesters. Similarly, a study of the basic hydrolysis of a variety of N,N-dialkylated imidate salts shows that the same stereoelectronic control is operating in the cleavage of hemiorthoamides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.