Abstract

BackgroundGrowth rate In children is reported to have seasonal variability. There are fewer published data regarding seasonal variability while on growth hormone (GH) therapy, and none analyzing growth rate with respect to number of daylight hours.MethodsWe analyzed 11,587 3-month intervals in 2277 prepubertal children (boys ages 3–14 years, girls ages 3–12 years) with idiopathic GH deficiency from the National Cooperative Growth Study (NCGS) database. All were naive to recombinant human GH (rhGH) therapy. Data were submitted from 31 US study centers. Seasonal variation in height velocity (HV) was assumed to be associated with the average number of daylight hours during the interval of time over which HV was computed. Number of daylight hours was determined from the date of the measurement and the latitude of the study center. Other independent variables evaluated included: height standard deviation score (SDS) at the beginning of the interval, chronologic age at the beginning of the interval, time from the start of rhGH treatment to the middle of the interval, month of the year, body mass index SDS at the beginning of the interval, rhGH dose/kg, mother’s height SDS, father’s height SDS, and log base 10 of the maximum stimulated GH concentration.ResultsAll variables examined, except month of the year, correlated significantly with interval HV. There was significant “seasonal” variability at all latitudes, with summer annualized HV being greater than winter HV. This difference was greatest in the first year of therapy (0.146 cm/yr/daylight hour; P < 0.0001) but persisted in subsequent years (0.121 cm/yr/daylight hr; P < 0.0001). The difference increased with distance from the equator. Growth rate over the year was not different among the latitudes reflected in this North American study.ConclusionsThere is “seasonal” variation in growth of children on rhGH therapy that correlates with number of daylight hours. The effect is modest and is greatest in the first year of therapy. Annual growth rate appears to be equal in children among latitudes covered by the US consistent with exposure to an equal number of daylight hours over the year. The physiologic mechanism behind this seasonal variation is not yet understood.

Highlights

  • Growth rate In children is reported to have seasonal variability

  • The most constant definitions focus on warmth and sunlight with the most reproducable mathematical variable for seasonality being the number of daylight hours

  • “Seasonal” variation has been evaluated to a lesser extent in children on growth hormone (GH) therapy [3,4,5] and has not been evaluated with respect to number of daylight hours

Read more

Summary

Introduction

Growth rate In children is reported to have seasonal variability. There are fewer published data regarding seasonal variability while on growth hormone (GH) therapy, and none analyzing growth rate with respect to number of daylight hours. The most constant definitions focus on warmth and sunlight with the most reproducable mathematical variable for seasonality being the number of daylight hours. “Seasonal” variation has been evaluated to a lesser extent in children on growth hormone (GH) therapy [3,4,5] and has not been evaluated with respect to number of daylight hours. As the National Cooperative Growth Study (NCGS) database contains 220,000 patient-years of growth data on children receiving recombinant human growth hormone (rhGH) therapy, we asked the following questions: 1) Does exogenous rhGH obscure “seasonal” variability in height velocity (HV) in prepubertal children with isolated growth hormone deficiency (IGHD) in North America? As the National Cooperative Growth Study (NCGS) database contains 220,000 patient-years of growth data on children receiving recombinant human growth hormone (rhGH) therapy, we asked the following questions: 1) Does exogenous rhGH obscure “seasonal” variability in height velocity (HV) in prepubertal children with isolated growth hormone deficiency (IGHD) in North America? 2) Is the magnitude of the “seasonal” difference in HV enough to influence clinical decision making regarding assessment of efficacy of a short trial of rhGH therapy? 3) Are there differences in annual HV in treated children with IGHD living at northern and southern latitudes in the United States?

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call