Abstract

PurposeThis paper aims to explore the in-sample explanatory and out-of-sample forecasting accuracy of the generalized additive model for location, scale and shape (GAMLSS) model in contrast to the GAM method in Munich’s residential market.Design/methodology/approachThe paper explores the in-sample explanatory results via comparison of coefficients and a graphical analysis of non-linear effects. The out-of-sample forecasting accuracy focusses on 50 loops of three models excluding 10 per cent of the observations randomly. Afterwards, it obtains the predicted functional forms and predicts the remaining 10 per cent. The forecasting performance is measured via error variance, root mean squared error, mean absolute error and the mean percentage error.FindingsThe results show that the complexity of asking rents in Munich is more accurately captured by the GAMLSS approach than the GAM as shown by an outperformance in the in-sample explanatory accuracy. The results further show that the theoretical and empirical complexities do pay off in view of the increased out-of-sample forecasting power of the GAMLSS approach.Research limitations/implicationsThe computational requirements necessary to estimate GAMLSS models in terms of number of cores and RAM are high and might constitute one of the limiting factors for (institutional) researchers. Moreover, large and detailed knowledge on statistical inference and programming is necessary.Practical implicationsThe usage of the GAMLSS approach would lead policymakers to better understand the local factors affecting rents. Institutional researchers, instead, would clearly aim at calibrating the forecasting accuracy of the model to better forecast rents in investment strategies. Finally, future researchers are encouraged to exploit the large potential of the GAMLSS framework and its modelling flexibility.Originality/valueThe GAMLSS approach is widely recognised and used by international institutions such as the World Health Organisation, the International Monetary Fund and the European Commission. This is the first study to the best of the author’s knowledge to assess the properties of the GAMLSS approach in applied real estate research from a statistical asymptotic perspective by using a unique data basis with more than 38,000 observations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.