Abstract

High-resolution, angle-resolved resonant Auger electron spectra of the NO molecule in the regions of both N and O 1s→2π core electron excitations are presented. A large number of vibrational final states are resolved due to high energy resolution. Calculations based on lifetime vibrational interference (LVI) theory neglecting interference between different electronic intermediate states and between direct and resonant channels have been performed. A comparison between theoretical and experimental spectra shows that LVI theory describes the major spectroscopic features quite well. The same holds for the evolution of the angular averaged partial cross sections with the change of excitation energy. The angular distribution of particular vibrational final states are, however, not described successfully with LVI calculations at the present level of sophistication. A theoretical analysis supports that one reason for this deviation is electronic state interference.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.