Abstract
AbstractThe mid‐lithosphere discontinuity (MLD), identified by a sharp velocity drop at ∼70–100 km depths within the cratonic lithosphere is key to comprehending the chemical composition and thermal structure of the cratonic lithosphere. The MLD is widely accepted to be caused by composition anomalies, such as hydrous minerals, which show low velocities and high electrical conductivities. However, noticeable high‐electrical conductivity anomalies have not been detected in the most cratonic lithosphere. Dolomite has an electrical conductivity similar to olivine and can be originated by carbonatitic melts trapped at ∼80–140 km depths. Here we investigated the elasticity of dolomite under mantle conditions using ab initio calculations and found dolomite exhibits significantly lower velocities than the primary minerals in the lithospheric mantle. Therefore, the dolomite enrichment might provide a good explanation for the observed velocity drop of the MLD in cratonic regions where no high‐conductivity anomaly has been detected, such as the northern Slave craton.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.