Abstract

AbstractThe observation of widespread seismic discontinuities within Archean and Proterozoic lithosphere is intriguing, as their presence may shed light on the formation and early evolution of cratons. A clear explanation for the discontinuities, which generally manifest as a sharp decrease in seismic velocity with depth, remains elusive. Recent work has suggested that midlithospheric discontinuities (MLDs) may correspond to a sharp gradient in seismic anisotropy, produced via deformation associated with craton formation. Here we test this hypothesis beneath the Archean Superior and Wyoming Provinces using anisotropic Ps receiver function (RF) analysis to characterize the relationship between MLDs and seismic anisotropy. We computed radial and transverse component RFs for 13 long‐running seismic stations. Of these, six stations with particularly clear signals were analyzed using a harmonic regression technique. In agreement with previous studies, we find evidence for multiple MLDs within the cratonic lithosphere of the Wyoming and Superior Provinces. Our harmonic regression results reveal that (1) MLDs can be primarily explained by an isotropic negative velocity gradient, (2) multiple anisotropic boundaries exist within the lithospheric mantle, (3) the isotropic MLD and the anisotropic boundaries do not necessarily occur at the same depths, and (4) the depth and geometry of the anisotropic boundaries vary among stations. We infer that the MLD does not directly correspond to a change in anisotropy within the mantle lithosphere. Furthermore, our results reveal a surprising level of complexity within the cratonic lithospheric mantle, suggesting that the processes responsible for shaping surface geology produce similar structural complexity at depth.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.