Abstract

Objective: Motoneurons are the focus of most investigations of amyotrophic lateral sclerosis (ALS), while the astrocyte reaction is regarded as a phenomenon secondary to neuron degeneration. Since astroglial reactivity differed in different studies of human and animal ALS models and often varied from case to case, we examined and compared astrocyte reactivity within the anterior horns of the spinal cord in a transgenic rat model of familial ALS and in human sporadic ALS (sALS) cases.Methods: Routine histological staining and immunohistochemical reactions to cytoskeletal proteins [neurofilaments, glial fibrillary acidic protein (GFAP), vimentin and tau] and proliferative markers (proliferating cell nuclear antigen and Ki-67).Results: In human sALS cases and in rats at the early pre-symptomatic and symptomatic stages of the disease, the astroglial reaction was very weak, although there was visible evidence of the morphological manifestations of motoneuron degeneration. Poor immunoreactivity to the GFAP and vimentin antigens and increased expression of tau protein were observed in astrocytes, particularly in the rat model. The astrocyte reaction was evident during a short 'transient' phase of the disease in animals, between the asymptomatic and paretic stages. Proliferating cell nuclear antigen immunoreactivity in glial and neuronal nuclei was observed only in animal material.Conclusions: Abnormalities in astrocyte cytoskeletal proteins are characteristic features for ALS, both in acquired and congenital forms of the disease. The cytoskeletal aberrations may lead to astroglial dysfunction and disturbances in glutamate uptake that may in turn increase the degeneration of motoneurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.