Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by selective motoneuron loss. Although the cause of ALS is unknown, oxidative stress, inflammation, and mitochondrial dysfunction have been identified as important components of its pathogenesis. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α) plays a central role in the regulation of mitochondrial metabolism and biogenesis via activation of transcription factors, such as nuclear respiratory factors 1 and 2 and mitochondrial transcription factor A (Tfam). Alterations in PGC-1α expression and function have previously been described in models of Huntington and Alzheimer diseases. Moreover, the protective effects of PGC-1α have been shown in animal models of ALS. Levels of PGC-1α correlate with the number of acetylcholine receptor clusters in muscle. This is of particular interest because neurodegeneration in ALS may be a dying-back process. We investigated mRNA and protein expressions of PGC-1α and PGC-1α-regulated factors in the spinal cord and muscle tissues of SOD1 ALS mice and in ALS patients. We detected significant alterations in mRNA expression of PGC-1α and downstream factors with their earliest occurrence in muscle tissue. Our data provide evidence for a role of PGC-1α in mitochondrial dysfunction both in the ALS mouse model and in human sporadic ALS that is probably most relevant in the skeletal muscle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Neuropathology & Experimental Neurology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.