Abstract

In the pathogenesis of Alzheimer's disease (AD), the most common neurodegenerative disorder, the amyloid-β (Aβ) peptide plays a key role. Originally, the Aβ fibrils were postulated to be the neurotoxic agents for a long time, because an increased presence of extracellular amyloid plaques, composed primarily of insoluble Aβ fibrils, is found in the brain of affected patients. Recent studies, however, showed a higher cytotoxicity for small Aβ oligomers than for the Aβ fibrils so that these soluble Aβ oligomers are moving to the centre of interest now [1,2]. Because of the unstable and noncrystalline nature of these species, obtaining structural information for small oligomers is an experimentally challenging task. Novel structural insight was obtained from a recent crystal structure of a tetramer formed by the amyloidogenic residues 18-41 of the Aβ peptide. To enhance stability, this fragment was genetically engineered into the CDR3 loop region of a shark Ig single variable domain antibody [3]. Since the respective crystal structure is stabilized by the antibody moiety, we investigated, whether the respective topology also represents a stable fold for the isolated Aβ-peptide. We performed molecular dynamics simulations in explicit solvent for the isolated tetrameric amyloid-β fragment in two different lengths (17-40 and 17-42) and the derived dimer and monomer structures. In contrast to Aβ17-40, we observed a stable dynamical behaviour for the tetramer of Aβ17-42: the extension of the antiparallel β-sheet through the residues 41 and 42 is responsible for the enhanced structural stability. In summary, our results suggest that the novel tetrameric structure represents a stable oligomer conformation for the longer and more neurotoxic Aβ42 species and thus could be a new target in rational drug design aiming at the prevention of toxic oligomer formation.

Highlights

  • In the pathogenesis of Alzheimer’s disease (AD), the most common neurodegenerative disorder, the amyloidb (Ab) peptide plays a key role

  • Novel structural insight was obtained from a recent crystal structure of a tetramer formed by the amyloidogenic residues 18-41 of the Ab peptide

  • This fragment was genetically engineered into the CDR3 loop region of a shark Ig single variable domain antibody [3]

Read more

Summary

Introduction

In the pathogenesis of Alzheimer’s disease (AD), the most common neurodegenerative disorder, the amyloidb (Ab) peptide plays a key role. Because of the unstable and noncrystalline nature of these species, obtaining structural information for small oligomers is an experimentally challenging task.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.