Abstract

Despite recent advancement in 3D molecule conformation generation driven by diffusion models, its high computational cost in iterative diffusion/denoising process limits its application. Here, an equivariant consistency model (EC-Conf) was proposed as a fast diffusion method for low-energy conformation generation. In EC-Conf, a modified SE (3)-equivariant transformer model was directly used to encode the Cartesian molecular conformations and a highly efficient consistency diffusion process was carried out to generate molecular conformations. It was demonstrated that, with only one sampling step, it can already achieve comparable quality to other diffusion-based models running with thousands denoising steps. Its performance can be further improved with a few more sampling iterations. The performance of EC-Conf is evaluated on both GEOM-QM9 and GEOM-Drugs sets. Our results demonstrate that the efficiency of EC-Conf for learning the distribution of low energy molecular conformation is at least two magnitudes higher than current SOTA diffusion models and could potentially become a useful tool for conformation generation and sampling.Scientific ContributionsIn this work, we proposed an equivariant consistency model that significantly improves the efficiency of conformation generation in diffusion-based models while maintaining high structural quality. This method serves as a general framework and can be further extended to more complex structure generation and prediction tasks, including those involving proteins, in future steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.