Abstract

Precipitation is crucial for the hydrological cycle and is directly related to many ecological processes. Historically, measurements of precipitation totals were made at weather stations, but spatial and temporal coverage suffered due to the lack of a robust network of weather stations and temporal gaps in observations. Several products have been proposed to identify the location of the occurrence of precipitation and measure its intensity from different types of estimates, based on alternative data sources, that have global (or quasi-global) coverage with long historical time series. However, there are concerns about the accuracy of these estimates. The objective of this study is to evaluate the accuracy of the ERA5 product for two ecoregions of the Canadian Prairies through comparison with monthly means measured from 1981–2019 at ten weather stations (in-situ), as well as to assess the intraseasonal variability of precipitation and identify dry and wet periods based on the annual Standardized Precipitation Index (SPI) derived from ERA5. A significant relationship between in-situ data and ERA5 data (with the R2 varying between 0.42 and 0.76) (p < 0.01)) was observed in nine of the ten weather stations analyzed, with lower RMSE in the Mixed Ecoregion. The Mean Absolute Percentage Error (MAPE) results showed greater agreement between the datasets in May (average R value of 0.84 and an average MAPE value of 32.33%), while greater divergences were observed in February (average R value of 0.57 and an average MAPE value of 50.40%). The analysis of wet and dry periods, based on the SPI derived from ERA5, and the comparison with events associated with the El Niño-Southern Oscillation (ENSO), showed that from the ERA5 data and the derivation of the SPI it is possible to identify anomalies in temporal series with consistent patterns that can be associated with historical events that have been highlighted in the literature. Therefore, our results show that ERA5 data has potential to be an alternative for estimating precipitation in regions with few in-situ stations or with gaps in the time series in the Canadian Prairies, especially at the beginning of the growing season.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.