Abstract

We consider the effect of the Sun's gravitational potential on the local phase space distribution of dark matter particles, focusing on its implication for the annual modulation signal in direct detection experiments. We perform a fit to the modulation signal observed in DAMA/LIBRA and show that the allowed region shrinks if Solar gravitational focusing (GF) is included compared to the one without GF. Furthermore, we consider a possible signal in a generic future direct detection experiment, irrespective of the DAMA/LIBRA signal. Even for scattering cross sections close to the current bound and a large exposure of a xenon target with 270 ton yr it will be hard to establish the presence of GF from data. In the region of dark matter masses below 40 GeV an annual modulation signal can be established for our assumed experimental setup, however GF is negligible for low masses. In the high mass region, where GF is more important, the significance of annual modulation itself is very low. We obtain similar results for lighter targets such as Ge and Ar. We comment also on inelastic scattering, noting that GF becomes somewhat more important for exothermic scattering compared to the elastic case.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.